Complete Molecular and Immunoprotective Characterization of Babesia microti Enolase
نویسندگان
چکیده
The apicomplexan Babesia microti is the primary causative agent of human babesiosis, one of the most broadly distributed tick-borne diseases worldwide. B. microti undergoes a complex lifecycle within both the mammalian host and the tick vector, and employs several different specific molecular mechanisms to enter host cells. Enolase, the key glycolytic enzyme in intracellular glucose metabolism, can also be expressed on the parasite's outer surface, binds to human plasminogen, and coordinates apicomplexan parasite invasion of host cells, however, it lacks sorting sequences or lipoprotein anchor sites. In the present study, we isolated the coding gene of B. microti enolase (BmEno), expressed it within E. coli and purified the recombinant BmEno protein (rBmEno). Consequently, we confirmed cytoplasmic and surface localization of BmEno via immunofluorescence, and demonstrated that rBmEno catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate. Moreover, our results showed that rBmEno binds to human plasminogen, and that the lysine analog ε-aminocaproic acid significantly inhibited this binding. Furthermore plasminogen bound to rBmEno converts to active plasmin. Additionally, actively immunizing mice with rBmEno could evoke a partial protective immunity against B. microti infection following challenge. In conclusion, B. microti enolase is a multifunctional cytoplasmic protein which is also expressed at the parasitic outer surface, facilitates binding to host plasminogen, and could partially protect hosts against parasite infection.
منابع مشابه
First molecular evidence of potentially zoonotic Babesia microti and Babesia sp. EU1 in Ixodes ricinus ticks in Belgium.
We report the first molecular evidence of the presence of Babesia sp. EU1 and Babesia microti in Ixodes ricinus ticks in Belgium. A 1-year national survey collected 1005 ticks from cats and dogs. A polymerase chain reaction technique amplifying a part of the 18S rRNA gene detected Babesia spp. in 11 out of 841 selected and validated tick extracts. Subsequent sequencing identified Ba. microti (n...
متن کاملMolecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target
Babesia microti is an emerging zoonotic protozoan organism that causes "malaria-like" symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinami...
متن کاملHuman babesiosis: Indication of a molecular mimicry between thrombospondin domains from a novel Babesia microti BmP53 protein and host platelets molecules
Human babesiosis is caused by the apicomplexan parasite Babesia microti, which is of major public health concern in the United States and elsewhere, resulting in malaise and fatigue, followed by a fever and hemolytic anemia. In this paper we focus on the characterization of a novel B. microti thrombospondin domain (TSP1)-containing protein (BmP53) from the new annotation of the B. microti genom...
متن کاملIdentification and characterization of putative secreted antigens from Babesia microti.
The need for improved diagnostic reagents to identify human long-term carriers of the zoonotic parasite Babesia microti is evidenced by numerous reported cases of transfusion-acquired infections. This report describes the identification and initial characterization of 27 clones representing seven genes or gene families that were isolated through serological expression cloning by using a techniq...
متن کامل